skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Hongyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing societal concern for consumer information privacy has led to the enforcement of privacy regulations worldwide. In an effort to adhere to privacy regulations such as the General Data Protection Regulation (GDPR), many companies’ privacy policies have become increasingly lengthy and complex. In this study, we adopted the computational design science paradigm to design a novel privacy policy evolution analytics framework to help identify how companies change and present their privacy policies based on privacy regulations. The framework includes a self-attentive annotation system (SAAS) that automatically annotates paragraph-length segments in privacy policies to help stakeholders identify data practices of interest for further investigation. We rigorously evaluated SAAS against state-of-the-art machine learning (ML) and deep learning (DL)-based methods on a well-established privacy policy dataset, OPP-115. SAAS outperformed conventional ML and DL models in terms of F1-score by statistically significant margins. We demonstrate the proposed framework’s practical utility with an in-depth case study of GDPR’s impact on Amazon’s privacy policies. The case study results indicate that Amazon’s post-GDPR privacy policy potentially violates a fundamental principle of GDPR by causing consumers to exert more effort to find information about first-party data collection. Given the increasing importance of consumer information privacy, the proposed framework has important implications for regulators and companies. We discuss several design principles followed by the SAAS that can help guide future design science-based e-commerce, health, and privacy research. 
    more » « less
  2. The rapid proliferation of complex information systems has been met by an ever-increasing quantity of exploits that can cause irreparable cyber breaches. To mitigate these cyber threats, academia and industry have placed a significant focus on proactively identifying and labeling exploits developed by the international hacker community. However, prevailing approaches for labeling exploits in hacker forums do not leverage metadata from exploit darknet markets or public exploit repositories to enhance labeling performance. In this study, we adopted the computational design science paradigm to develop a novel information technology artifact, the deep transfer learning exploit labeler (DTL-EL). DTL-EL incorporates a pre-initialization design, multi-layer deep transfer learning (DTL), and a self-attention mechanism to automatically label exploits in hacker forums. We rigorously evaluated the proposed DTL-EL against state-of-the-art non-DTL benchmark methods based in classical machine learning and deep learning. Results suggest that the proposed DTL-EL significantly outperforms benchmark methods based on accuracy, precision, recall, and F1-score. Our proposed DTL-EL framework provides important practical implications for key stakeholders such as cybersecurity managers, analysts, and educators. 
    more » « less